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Abstract. This paper represents the numerical calculation of the undetermined static 

reactions to the planar plane quadrilateral mechanism with straight bars and kinematic 

rotation couplers. 

The algorithm used was obtained using the relative displacement method and was presented 

in a previous paper. The method allows linear elastic calculation to determine undetermined 

static reactions. 

For a numerical application a computational program was used, the Matlab software, with 

which the variation diagrams for the determined static reactions were obtained for the 

undetermined static reactions as well as the variations of the small angles of rotation in the 

kinematic couplers. The results obtained, we hope to be the ones they are looking for, and 

they are being developed 

The work can be considered a novelty. The research conducted on the literature at both 

international and national levels has demonstrated the lack of such research concerns. 

In conclusion, this work can be considered useful to researchers, manufacturers and users of 

such mechanisms. The quadrilateral mechanism is quite used, the results obtained in this 

paper will be useful to the researchers in this field, and the designers will more efficiently 

dimension the components of such a mechanism. The method may be useful in sizing 

calculations of existing vehicle mechanisms. 

1.  Introduction 

In the previous work [4] a method for the calculation of undetermined static reactions was 

developed for the planar straight quadrilateral mechanism and kinematic rotation couplers 
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In the present paper, starting from the obtained analytical results, the algorithm and the 

calculation program for a numerical application will be elaborated. 

2.  Theoretical aspects. Remarks 

The articulated quadrilateral mechanism is considered ABCD from figure. 1,  

 

 
Figure. 1. The articulated quadrilateral mechanism 

 

formed by the straight bars CDBCAB ,,  indexed by numbers 3,2,1  and positioned through the 

angles 321 ,,   compared to the fixed reference system AXY  and notations: 

- AYAX RR ,  forces of reaction, statically determined from the joint A ; 

- AZM  - momentum, statically determined from the joint A , moment that maintains 

equilibrium; 

- AZR  - reaction force, statically indeterminate from the joint A ; 

- AYAX MM , - moments of reaction, statically undetermined from the joint A ; 

-  AR  - column matrix of plűckeriene coordinates of the torsors reaction from A ; 

-  DCB PPP ,,  - column matrices of plűckeriene coordinates torso’s external forces 

acting in DCB ,, ; 

-  DCB UUU ,,  column matrices    8,6 , attached to kinematic joints 

   

   

   TDBD

T

CCC

T

CBB

YYU

YYU

YYU

0100

;0100

;0100







 (1) 

-  BU
~

,  CU
~

,  DU
~

 column matrices given by relationships: 

   

   

   TCDD

T

CCC

T

BBB

XYU

XYU

XYU

1000
~

;1000
~

;1000
~







 (2) 

-      CDBCAB HHH ,,  the flexibility matrices of the bars CDBCAB ,, ; 

-  ADH - the matrix given by relationship: 

       CDBCABAD HHHH   (3) 

-  ADK - the stiffness matrix defined by the relationships 
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-    ADAD KK 21 ,  - matrices given by equality: 
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-  TP - matrix column 
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-  ~ - matrix column 
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-    BA , - matrices 
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- DCB  ,, - small angles of rotation in kinematic joins; 

-   - matrix column. 

   TDCB    (9) 

With these notations [5], deduct the determined static reactions 
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and the angles of rotation in the kinematic joints 
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3.  Calculation algorithm 

 

It is considered as for bars indexed with 3,2,1  the lengths are known il , areas iA , of the normal 

sections, geometrical moments of inertia  ziyixixiziyi IIIIII ,,  , elasticity modules ii GE ,  the 

flexibility matrices  7 , 
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3,2,1i  and distance DXAD   

Calculates for angle values 1  ranging from grade to grade: 

a) the angles 23, with relationships 
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b) the coordinates of the points DCB ,, ; 
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c) translation matrices; 
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d) rotation matrices; 
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e) position matrices; 
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f) the flexibility matrices; 
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g) the total flexibility matrix 
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       CDBCABAD HHHH   (21) 

h) matrices      21 ,, ADADAD KKK  with relationships (3), (4), (5); 

i) column matrices    ~,TP  with relationships (6), (7); 

j) the matrices    BA ,  with relationships (8); 

k) static reactions determined by the relationship (10); 

l) static reactions not determined with the relationship(11); 

m) the rotation of the kinematic couple with the relationship(12);. 

4.  Numerical application 

It determines statically the reactions, determined and indetermined and then the angular rotation of 

the couplings for the mechanism of Figure 1, knowing that the element 3 is actuated in D  in the 

direction of the axis AZ , for a moment M
~

 and knowing it as punctual C  acting force P  in the 

direction of the axis AZ . It is considered that the bars have equal, circular cross sections of 

diameter d . 
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In the numerical case the calculation program is elaborated using the Matlab code, on the basis of 

which are represented the following diagrams 

 
Figure. 2. The statically undetermined reactions AZR  vs. 1  

 
Figure. 3. The statically undetermined reactions AXM  vs. 1  

 
Figure. 4. The statically undetermined reactions AYM  vs. 1  
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5.  Conclusion 

 

Under these conditions, based on the calculations described in the paper, a computational program 

was drawn using the Matlab code, and the results obtained for the undetermined static reactions are 

transcribed in the diagrams of Fig. 2-4. In the absence of motion-compatible external forces (forces 

in the plane of motion and moment perpendicular to the plane of motion), the components 

AZAYAX MRR ,,  compatible with the movement of the reaction from A are null. The obtained 

variation diagrams represent periodical variations. For AzR  the extreme, minimum and maximum 

values are between; -40.0089, -21.6020. For component AXM , values are between -20.3390 and -

12.6537 and for AYM  between -2.2803 and 9.2389. Static undetermined reaction values are 

significant and can influence the movement of the mechanism. The minimum reaction moment, 

AXM , in the absolute value, is greater than the momentum of the drive. 
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