
 

National University of Science and 
Technology “POLITEHNICA” Bucharest 

University Center of Pitesti 
Faculty of Mechanics and Technology 

SCIENTIFIC 
BULLETIN 

AUTOMOTIVE series 
year XXX, no. 34 

 
 

Development of a tool to analyse adhesive volumes under X-ray 

µ-tomography 

Andreea TINTATU1*, Claudiu BADULESCU2 

1 Faculty of Mechanics and Technology, National University of Science and Technology 

Politehnica Bucharest, Bucharest, 060042, Romania 

2Dupuy de Lôme Research Institute (IRDL), UMR CNRS 6027, ENSTA, Brest, F-29200, France 
 

*Corresponding author e-mail andreea.tintatu@upb.ro 
 

Article history  

Received 15.07.2024 

Accepted 12.10.2024 

DOI https://doi.org/10.26825/bup.ar.2024.004 

 

Abstract. In bonded assemblies, porosity within the adhesive layer— which often occurs during 

resin and hardener mixing—can significantly influence mechanical performance. This study 

addresses the lack of understanding regarding the effect of porosity on joint behavior by 

proposing a dedicated analysis methodology. A tool was developed to process X-ray µ-

tomography data, allowing for noise filtering, artifact removal, and detection of microstructural 

entities (pores) through grayscale intensity thresholding. Two methods for average intensity 

extraction were designed and tested on synthetic volumes using MATLAB, with the more 

computationally efficient approach selected for real data analysis. This tool enables optimized 

porosity quantification, contributing to improved evaluation of adhesive joint integrity. 

Keywords: bonded joint, structural assemblies, pores, analysis tool, X-ray µ-

tomography 

INTRODUCTION  

In the design and fabrication of modern structures, the assembly of components represents a 

critical step with respect to the durability and reliability of the final structure. Classical mechanical 

joining techniques, such as bolting, riveting, or welding, have long been widely used across various 

industries. However, these methods can become inadequate or even unfeasible when dealing with 

complex geometries or dissimilar materials that are sensitive to temperature or localized stress 

concentrations. In this context, structural adhesive bonding has gained increasing prominence, offering 

an efficient and viable alternative to traditional joining techniques. 

Adhesive bonding technology enables the creation of effective joints between different types 

of materials (composites, metal alloys, polymers, etc.) and is widely used in automotive, aerospace, 

marine, and railway industries. Among its notable advantages are a more uniform stress distribution, 

reduced stress concentrations, preservation of part geometry, and the ability to incorporate additional 

functionalities such as sealing or thermal/acoustic insulation [1]. However, despite these evident 

benefits, the mechanical behavior of bonded joints remains only partially understood, particularly in the 

presence of internal defects such as porosities [2-4]. 

Porosities are among the most common defects encountered in two-component adhesives. 

They often appear during the mixing process of resin and hardener and can increase in volume and size 

during the curing phase. These pores can significantly influence the mechanical behavior of the joint. 

Recent studies [5-6] have shown that such defects can serve as crack initiation sites, compromising both 

static and dynamic load-bearing capacity. Therefore, understanding how porosities affect the 

performance of bonded joints is essential for enhancing their reliability. 

In this regard, the non-destructive analysis of the adhesive’s microstructure, particularly via 

X-ray computed tomography (XCT), has become an especially valuable method [7]. Unlike 

conventional optical or electron microscopy—which provide only 2D images and require destructive 
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sample preparation—X-ray tomography enables the acquisition of high-resolution three-dimensional 

images of internal structures without compromising specimen integrity. This allows not only for the 

visualization of porosities but also for their quantification in terms of number, size, spatial distribution, 

and volume fraction [6]. Additionally, advances in 3D image processing software (such as ImageJ, 

VGStudio MAX, or Avizo) now facilitate semi- or fully-automated analysis of reconstructed volumes. 

These digital tools enable the extraction of quantitative data necessary for correlating defect presence 

with the mechanical behavior observed during experimental testing. 

The main motivation for this study stems from the need to deeply analyze the influence of 

porosity on structural adhesive joints, with the main of developing a digital tool capable of processing 

volumes obtained through X-ray tomography and extracting and interpreting relevant microstructural 

parameters.  

Accordingly, this work proposes the development and implementation of a tomographic data 

processing algorithm, which will include filtering steps, artifact correction and pore segmentation based 

on an intensity threshold. In addition, a robust method to determine the mean image intensity, which is 

essential for accurate pore boundaries, will be pursued. The proposed methodology will be tested on 

synthetic (simulated) volumes thus allowing the validation and practical application of the developed 

tool on real (experimentally obtained) volumes. 

MATERIAL AND EXPERIMENTAL METHODS 

The experimental method for investigating the porosity evolution in bonded assemblies using 

X-ray microtomography has been more extensively discussed in papers [8]. To achieve this, samples 

were prepared from two aluminum substrates bonded with a 400 µm layer of epoxy adhesive. The 

bonding process was carefully controlled using a custom device to ensure proper alignment and 

consistent adhesive thickness. Surface treatments were applied to improve adhesion, and the samples 

were cured in a thermal chamber at 115°C.  

X-ray microtomography was then used to scan the samples while applying mechanical stress 

through a built-in tensile test machine. The scanning setup produced high-resolution 3D images that 

captured internal structural changes under load. The mechanical load was gradually increased in steps 

of 170 N until the samples failed.  

Due to the large size of the reconstructed volumes, the complete study of microstructure in 

relation to the applied load requires the development of a processing tool that: 

• Eliminates unwanted artifacts from reconstructed adhesive slices and extracts the average 

intensity; 

• Filters the signal to eliminate noise; 

• Detects observed microstructural features (porosities) from a grayscale intensity threshold. 

The development of this analysis tool is the subject of the present article, and the methods of 

implementation are presented below. 

CREATION OF A SYNTHETIC MICRO-TOMOGRAPHIC VOLUME 

X-rays are generated during the acquisition at the microtomographic analysis. From this set of 

X-rays to which references and zero flux images are associated, we obtain projections of the attenuation 

constant 𝜇 considered as a continuous function of three spatial variables (𝑥, 𝑦, z), which can be computed 

as follows: 

𝐼

𝐼0
= exp⁡ (∫(𝑥, 𝑦, 𝑧)𝑑𝑥) (1) 

Where:  

- I0  represents the intensity of the source;  

- I is the detected intensity;  

- x represents the distance along the transmission path. 
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To process tomographic images accurately, we express the gray levels S of each pixel in a 

volume slice in the following form: 

𝑆𝑍𝑗(𝑥, 𝑦) = 𝐼0,𝑍𝑗(𝑥, 𝑦) +⁡𝛾𝑖 . 𝑝𝑖(𝑥, 𝑦) + 𝑏𝑍𝑗(𝑥, 𝑦) (2) 

In equation (2), the following quantities are used: 

- 𝑆𝑍𝑗(𝑥, 𝑦) represents the gray level, where j is the number of the slice in the Z direction of the 

studied volume, j ∈ [0, 1, . . . ,100] ; 

- 𝐼0,𝑍𝑗(𝑥, 𝑦) is the average intensity; 

- 𝛾𝑖  represents the contrast for each phase; 

- 𝑝𝑖(𝑥, 𝑦) = 𝑁𝑖, où⁡𝑁𝑖 ∈ [0, 1, . . . , 28 − 1] are integer values representing the gray level 

intensity of each phase, and  𝑖⁡ ∈ ⁡ [0, 1, . . . , 𝑁], where 𝑁 is an integer representing the number 

of phases; 

- 𝑏𝑍𝑗(𝑥, 𝑦) is the random noise. 

It is possible to establish the main architecture of this tool which consists of preprocessing 

images, extracting 𝐼0 and analyzing these images, from the definition of its objective and the expression 

of the gray levels in relation to the coordinates of the pixels. In this context, the tool will be developed 

based on raw microtomographic images, such as shown in Figure 1a. Using this initial data, the tool will 

enable the automatic detection of relevant microstructural features in the raw signal, as exemplified in 

Figure 1b - the signal representing the gray levels along a path in the source image. After extracting the 

average intensity I0 the identification of porosities and adhesive will be possible. 

 

 

 
 

(a) Slice in the middle of the adhesive (b) Grayscale along a path (yellow line on a)) 

Figure 1. A slice of raw data 

 

Since the raw data obtained from X-ray microthography are encoded in 16 bits and the volumes 

of the reconstructed samples are quite large, direct analysis of these data is problematic. Thus, the 

development of the image analysis method and the validation of the architecture of the developed 

instrument were carried out using the artificial radiographs, generated for a given amount of porosity, 

porosity ratio, contrast and noise. Therefore, to optimize the analysis time, we created a synthetic volume 

smaller than the volume of the real sample with similar characteristics. The centroid coordinates and 

radius of these synthetic porosities are randomly distributed and stored for later comparison. 

The generated volume has the following characteristics: 

- 300x300x100 voxels3; 

- 300 spherical porosities; 

adhesive 

pores 
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- 𝛾𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑖𝑒𝑠 = 30⁡(gray level value); 

- 𝑏𝑍𝑗(𝑥, 𝑦)  - Random noise with a standard deviation value of σ = 9,62 (gray level value); 

- The porosity ratio of 9.59⁡%. 

Next, we will represent and explain each step during the generation of the synthetic volume. 

In the first step we start from a volume of 300x300x100 voxels3 in which we create 300 spherical 

porosities. The porosities do not intersect and are uniformly distributed between 1 and 15 voxels and 

their average radius is 3 pixels. The tool developed should help us find these porosities with the greatest 

precision. 

Figure 2a represents a slice of the raw volume created, consisting of a binomial image in which 

the adhesive and porosity are correctly determined. Based on equation (2), initially the two phases were 

created with gray level value 1 (𝑆𝑍𝑗(𝑥, 𝑦)=1) for porosity (white pixels in Figure 2a) and 0 for adhesive 

(the black pixels in Figure 2a). For the image in Figure 2a thus obtained, in Figure 2b we have 

represented the gray levels corresponding to the trajectory marked in yellow (x = 150 pixels). From 

there, the volume will be modeled in such a way that the slices obtained are similar to the raw images 

obtained from the tomography of the samples taking into account the gray level. 

 

 

  

(a) Generated volume slice (b) Grayscale along a path 

Figure 2. A slice of generated data (1) 

 

The next step is to assign the actual contrast and gray level intensity values for the two phases 

of the adhesive. Thus, we assign to the second term of equation (2) (𝛾𝑖. 𝑝𝑖(𝑥, 𝑦)) the value 26220 for 

adhesive and 18560 for porosity. These values were observed from experimental data obtained by X-

ray tomography shown as an example in Figure 1b. Figure 3 shows the evolution of the generated image 

and the signal corresponding to the marked trajectory after the assignment of these values. 

The next step in generating our volume is adding random noise. Random noise (𝑏𝑍𝑗(𝑥, 𝑦)) is 

the third term in our basic equation (2) and influences the generated images and the corresponding gray 

levels, as shown in Figure 4. 

The main interest in our study is the first term of equation (2), the average intensity, 

𝐼0,𝑍𝑗(𝑥, 𝑦). The value of this term was determined by an equation of the form: 

𝐼0,𝑍𝑗(𝑥, 𝑦) = (𝑎𝑥5 + 𝑏𝑥4 + 𝑐𝑥3 + 𝑑𝑥2 + 𝑒𝑥 + 𝑓)(𝑔𝑦2 + ℎ𝑦 + 𝑖)(𝑗𝑧2 + 𝑘𝑧 + 𝑙)          
(3) 

Where a, b, c, d, e, f, g, h, i, j, k, l are constants and x, y, z represents the coordinates of the 

points inside the generated volume (300x300x100 voxels3). 
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(a) Generated volume slice 

(b) Grayscale along a path 

Figure 3. A slice of generated data (2) 
 

  

(a) Generated volume slice (b) Grayscale along a path 

Figure 4.  A slice of generated data (3) 

 

Equation (3) of the form describes the surface shown in Figure 5. The average intensity value 

obtained completes the value of the gray levels established so far in our volume, becoming similar to an 

actual volume of adhesive. Figure 6 shows the final gray levels obtained for the previously analyzed 

image after adding 𝐼0. 

 

  

Figure 5. The surface described by the equation 

of 𝐼0 

Figure 6. Grayscale for a slice 
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The final image is shown in Figure 7 which shows the change in path of the signal transmitted 

by the gray levels. Up to this stage, we can easily separate the two phases present in the adhesive because 

we can establish a limit between the gray level value corresponding to the adhesive and the gray level 

value corresponding to the porosities. To choose this limit, Nobuyuk Otsu developed a non-parametric 

and unsupervised automatic threshold selection method for image segmentation [9]. By this method an 

optimal threshold is selected by the discriminant criterion in order to maximize the separability of the 

resulting classes in gray levels. The procedure uses the zero-order and first-order cumulative moments 

of the gray level histogram (Figure 8). 

 

  

(a) Generated volume slice (b) Grayscale along a path 

Figure 7. A slice of generated data (4) 

 

Figure 8a shows the histogram of the generated volume without adding 𝐼0. This is an ideal 

case where the histogram has a deep, sharp valley between two vertices representing objects and a 

background, so that the threshold can be chosen at the bottom of this valley. However, for most real 

images, it is often difficult to accurately detect the valley floor, especially in cases where the valley is 

flat and wide, soaked in noise, or when the two peaks are extremely unequal in height, they often do not 

produce a traceable valley. The histogram in Figure 8b represents the case where the average intensity 

has been added to the gray level. The bottom of the valley is not clear and the gray level boundary 

between the adhesive and the porosity can no longer be established. 

 

  

(a) Without 𝐼0 (b) With 𝐼0 

Figure 8. Histogram of the generated volume and the threshold calculated using the Otsu method 
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For a more precise interpretation of the gray level limit between porosity and adhesive, we 

compared, as an example, two signals of the same trajectory for a slice of the volume without 𝐼0 and 

respectively with 𝐼0 (Figure 9). In Figure 9a, the red line represents the value found at the bottom of the 

valley in the histogram of the analyzed volume (gray level = 22 000). The signal represents the gray 

levels of the slice analyzed at x = 150 pixels and can be interpreted as follows: all points below 22 000 

represent the porosities, and all points above this value represent the adhesive. However, the presence 

of the average intensity in equation (2) almost makes it impossible to separate the two phases. So, we 

can see in Figure 9b that wherever we place the limit after adding 𝐼0 to the equation, the pores can no 

longer be separated by the adhesive depending on the gray level value. 

 

  

(a) Signal without 𝐼0 (b) Signal with 𝐼0 

Figure 9. Grayscale along a path 

 

 

DEVELOPMENT OF THE TOOL 
 

The main objective of the processing tool is to identify the average intensity 𝐼0 and extract it 

for each slice of the generated volume. The final images must be clear and we must be able to delineate 

the pores of the adhesive. By analyzing the synthetic volume of adhesive, we found two methods that 

allow us to extract 𝐼0. For the sake of clarity, a block diagram representing the development of the 

proposed analysis tool is shown in Figure 10. 
 

 

Figure 10. Development of the proposed analysis tool 

 



8 

 

A first extraction method is the “pixel by pixel” analysis of each slice of the generated volume. 

This method is based on the search for a polynomial of degree n which simulates the trajectory of each 

gray level signal generated for x = 1... 300 pixels. For example, Figure 11a shows a slice of the generated 

volume that we will subsequently analyze to extract the average intensity. We see that the trend of the 

gray level signal (Figure 11b) for a given trajectory (x = 150) can be described by a polynomial. 

Extraction  𝐼0 using this method therefore consists of identifying a polynomial of the form: 

𝑃(𝑋) = 𝑎0𝑋
𝑛 + 𝑎1𝑋

𝑛−1 +⋯+ 𝑎𝑛−1𝑋 + 𝑎𝑛 
(4) 

Where: 𝑎0 ≠ 0; 𝑎0, 𝑎1,…, 𝑎𝑛 are the coefficients of the polynomial; X=1…300 is the current 

pixel index; 𝑃(𝑋)=𝑆𝑍𝑗(𝑥, 𝑦) is the corresponding gray level. 

 

  

(a) The initial image (b) Grayscale along a path 

Figure 11. A slice of generated data (5) 
 

The Matlab software is able to identify this polynomial by calculating the average of all the 

points representing the gray level value corresponding to a trajectory. The degree of the polynomial 

represent a parameter to be determined according to the average intensity present in the volume 

analyzed, according to the calculation method. In this case, for the generated volume, degree 2 of the 

polynomial was chosen. The polynomial to extract, identified by the software of the analyzed signal, is 

represented in Figure 12a. The presence of porosity disrupts the trajectory of this polynomial, therefore, 

in Figure 12b, we can see that the quality of the signal obtained after the extraction of the polynomial is 

influenced along the zones where the porosities are found. 

 

  

(a) Identification of the first polynomial (b) Signal after extraction of the first 

polynomial 

Figure 12. Extraction of the first polynomial 
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To correct the signal obtained after the extraction of the 2nd degree polynomial, we apply the 

same algorithm again, this time changing the approach by choosing the value of the gray levels 

corresponding to the porosities lower than the value of the corresponding gray levels to the adhesive. 

From this premise, we will identify a second polynomial based on the average of the upper peaks of the 

signal highlighted in Figure 13 with red circles. These peaks belong to the adhesive and the trend 

described by them is not disturbed by the presence of the pores as in the previous step. The 3rd degree 

of the polynomial was chosen in this case. 

 

  

(a) Peak identification (b) Polynomial identification 

Figure 13. Identification of the second polynomial 

 

The image we obtain from the extraction of the two polynomials associated with the average 

intensity is shown in Figure 14a. The quality of the image obtained is visibly improved and we can 

easily distinguish the pores of the adhesive. Figure 14b shows the gray level signal corresponding to the 

selected path on the analyzed image. The signal obtained has a linear trend which makes it possible to 

clearly establish a limit between the values of the gray levels corresponding to the two studied phases. 

 

  

(a) Final image (b) Final signal 

Figure 14. A slice of data generated after extraction 𝐼0 by the first method 

 

Since the "pixel by pixel" method of intensity extraction average is satisfactory from the point 

of view of results obtained, we have developed, in parallel, a second extraction method. This method 

aims to extract 𝐼0 by optimizing calculation time. Using the first method, each signal of gray level values 

in an image is analyzed (for x = 1 ... 300). The second method developed treaty the gray level signals 

for the whole image. The method is based on identification and extraction of a surface represented by 
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the average of all points of grayscale values for a slice of the generated volume. The software Matlab 

can identify this surface as a polynomial shape: 

𝑆(𝑋,𝑌) = (𝑎0𝑋
𝑛 + 𝑎1𝑋

𝑛−1 +⋯+ 𝑎𝑛−1𝑋 + 𝑎𝑛)(𝑏0𝑌
𝑚 + 𝑏1𝑌

𝑚−1 +⋯+ 𝑏𝑚−1𝑌 + 𝑏𝑚) 
(5) 

Where: 𝑎0, 𝑏0 ≠ 0; 𝑎0, 𝑎1,…, 𝑎𝑛, respectively 𝑏0, 𝑏1,…, 𝑏𝑚 are the coefficients of the 

polynomial; X=1…300, Y=1…300 are the coordinates of the points representing the gray level values 

for an image; 𝑆(𝑋,𝑌)=𝑆𝑍𝑗(𝑥, 𝑦) is the corresponding gray level. 

The degrees of the polynomials which define the surface are the parameters which can be 

chosen suitably so that the surface found correctly defines the gray levels of the analyzed image. In this 

case, analyzing the initial image in Figure 11a, given as an example, we can observe in Figure 15 that 

the surface obtained after choosing degree 5 for the two polynomials perfectly determines the average 

of the points on the graph. 

 

 

Figure 15. Identification of 𝐼0 by the second method 

 

The effect of extracting 𝐼0 using this method can be seen in Figure 16 where we showed how 

the raw signal was transformed (Figure 16a) into an uniform signal with a horizontal trend (Figure 16b). 

The final image shown in Figure 17a is clean and we can easily distinguish the pores of the adhesive. 

 

 
 

 

(a) Raw image signal (b) Final image signal 

Figure 16. Identification of  𝐼0 by the second method 
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Comparing the two methods, we observe that the signal along a trajectory obtained with the 

second method (for x = 150) and shown in Figure 17b is almost identical to the signal obtained with the 

first method (Figure 14b). Thus, we conclude that both methods gave the desired results, and we can use 

them in the further analysis of the real data. Given that both methods lead to the same quality of the final 

image, we will use in the porosity analysis of the volume generated during the second method of 

extraction of the average intensity for good optimization of calculation times. 

 

 

 

(a) Final image (b) Final signal 

Figure 17. A slice of data generated after extraction 𝐼0 by the second method 

 

The final goal of the developed processing tool is to recover the adhesive pores. After 

extraction 𝐼0, the pores will be recovered by the Otsu method. Also, using the histogram in Figure 18a, 

we can establish a boundary between adhesive and porosity. Figure 18b shows a binary image in which 

we find porosities (white pixels) according to the Otsu method. We can see that we find small artifacts 

that disrupt the quality of the image. These artifacts occur because the valley depicted by the histogram 

is not perfectly defined. To accentuate this valley and thus recover the porosity without being disturbed 

by other artifacts, we will apply a 3D median filter using Matlab software [10]. 

 

  

(a) Histogram of the generated volume and the 

threshold calculated using the Otsu method 

(b) Porosity found 

Figure 18. Porosity analysis (1) 

  

The size of the median filter kernel will determine the minimum size of the segmented features 

to consider. To remain relatively small compared to the majority of porosities, a kernel size of 7 voxels 

is chosen. Therefore, all porosity segmented, whose volume is less than 125 voxels3 (i.e. the volume of 
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the kernel) will be considered as too uncertain and will therefore be rejected. The chosen filter is three-

dimensional to avoid loss of information during filtering. 

After 3D filtering of the images, we obtain the histogram shown graphically in Figure 19a 

where we distinguish a much more pronounced valley than that of the histogram shown previously. 

Using this histogram, we established a threshold subsequently used in the calculation method for 

porosity analysis. The porosities finally recovered after the 3D filtering are visible in the image in Figure 

19b. The product image is therefore visibly improved because there are no more artifacts, and the pores 

are well defined. 

 

  

(a) Histogram of the generated volume and 

the threshold calculated using the Otsu method 

after filtering 

(b) Porosity found after 3D filtering 

Figure 19. Porosity analysis (2) 

 

Summarizing and analyzing all the steps of creating the synthetic volume, Figure 20 illustrates 

the principle of the developed processing tool: starting from a volume in which a certain number of 

porosities have been generated (Figure 20a), after all its characteristics have been aligned with those of 

a real adhesive volume (Figure 20b), the average intensity 𝐼0 is extracted (Figure 20c), and finally we 

find the same porosities as those we generated in the first step (Figure 20d). 

 

 

Figure 18. Synthetic volume: (a) Generated porosities; (b) Synthetic volume generated with 𝐼0; 

(c) Synthetic volume generated after extraction of 𝐼0; (d) Porosities recovered 
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CONCLUSIONS  

The present study addressed a critical issue in the domain of structural adhesive bonding—

namely, the presence and influence of porosities within the adhesive layer—by proposing and validating 

a comprehensive digital processing tool based on X-ray microtomographic data. Given the impact that 

porosities can have on the initiation and propagation of failure in bonded joints, the ability to visualize 

and quantitatively assess these defects with high precision is essential for both material characterization 

and structural integrity evaluation. 

To this end, the research introduced a multi-step methodology that begins with the generation 

of synthetic adhesive volumes. These artificially constructed datasets were designed to simulate real 

tomographic results while allowing complete control over parameters such as porosity size, localization, 

intensity contrast and noise. This approach has proven valuable in testing and calibrating image analysis 

methods before applying it to real data. The cornerstone of the tool’s architecture lies in the accurate 

extraction of average gray level intensity (𝑰₀), which represents a crucial component in differentiating 

the adhesive phase from porosities. Two extraction methods were explored in depth: (1) a pixel-wise 

polynomial fitting of intensity variation along defined trajectories, and (2) a global surface-based fitting 

method using bivariate polynomials to model the full intensity distribution across image slices. Both 

approaches yielded comparable segmentation accuracy, but the second method demonstrated a clear 

advantage in terms of computational efficiency, making it the preferred choice for large data sets and 

real adhesive volumes. 

Beyond the intensity correction step, the study implemented Otsu’s thresholding method to 

delineate pore boundaries based on grayscale histogram separation. However, due to real-world signal 

variability and noise, this step alone was insufficient. To enhance segmentation robustness, a 3D median 

filter was applied, removing small artifacts and smoothing the volume in a way that preserved relevant 

porosity features. The post-filtering analysis revealed significant improvement in histogram clarity and 

pore identification accuracy. 

The tool developed through this study enables a complete and semi-automated processing pipeline, 

including: 

• Raw tomographic image import and preprocessing; 

• Average intensity extraction and grayscale normalization; 

• Noise reduction and artifact suppression; 

• Segmentation of porosities with adjustable thresholds; 

• Visualization and statistical quantification of pore characteristics (e.g., number, volume, 

distribution). 

Applied to real experimental data, this tool facilitates a more accurate understanding of how 

manufacturing defects influence adhesive joint behavior. It provides a solid foundation for coupling 

experimental observations with numerical modeling approaches (such as cohesive zone modeling or 

finite element simulations), where realistic input data regarding porosity geometry and density are 

paramount. 

From a broader perspective, the results demonstrate that tomographic data, when properly 

processed, can unlock crucial insights into the integrity of adhesive interfaces. The integration of this 

tool into experimental workflows can be particularly beneficial in industries such as aerospace, 

automotive, marine, and energy, where lightweight materials and hybrid assemblies are increasingly 

employed, and where bonding reliability is paramount. 

Looking forward, future developments may focus on: 

• Expanding the tool’s capabilities for in situ time-lapse tomography to study porosity evolution 

under mechanical loading; 

• Integrating machine learning algorithms to enhance segmentation accuracy and automate 

threshold selection; 

• Applying the methodology to different types of adhesives, joint configurations, and substrates. 
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In conclusion, the digital tool developed in this work not only provides a robust and efficient 

framework for porosity analysis in adhesive joints, but also opens the door to more advanced structural 

diagnostics and material optimization strategies that are essential in high-performance engineering 

applications. 
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