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DYNAMICS OF AN AUTOMOBILE WHEEL
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'University of Pitesti, Romania,

Abstract: In our paper we study the dynamics of an automakiieel. The wheel is considered as a
torus one. We obtained the equations of motion uitibedy form. A numerical application is also
considered, the diagrams obtained by numerical Eitians being presented.
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INTRODUCTION

In the scientific literature is considered that théomobile wheel is a circular disk, rolling witho
sliding on a horizontal plan. In this paper we khadke a step forward considering that the wheal is
torus, which is the real case. The wheel has sgreds of freedom, three translations and three
rotations. The reaction has three components dloaghree axes of coordinates. The equations of
motion are obtained using the multibody theory fbatve use the Lagrange second order equations
and the matrix of constraints. The equations areensomplicate, but they reflect in a more accurate
form the real case. We consider the both casesanidhwithout rolling friction.

NOTATIONS

The following notations are used
— m, the mass of the wheel;
- [m] the matrix defined by

mO O
[m]: OmOj|; 1)
00m
- J,, Jy, J,, the principal, central moments of inertia;
- [J] the matrix given by
J, 00
[0]=10 3, 0 ; @)
0 0 J,
— O, the centre of the torus;
— Iy, I, the radii of the torus;
— s, the coefficient of the rolling friction;
-y, 6, ¢, the angles of Euler;
- [\y] [9] [(p] , the matrices
cosy —-sing 0 1 0 0 cosh —-sing O
[\u]: siny cosy O ,[9]: 0 cosB -sinB ,[(p]: sing cosp Of; 3)
0 0 1 0 sinB cos6 0 0 1

- [A] the rotational matrix

[A] = [w]e]lo]: @)
—|u, . lus], [U¢J, the matrices



lu,]= [(1) _ol g], [Ue] = [8 8 —01], u,]= [2 _01 8]; 5)

000 100 000
- [Aw[ [Aq]. [A¢], the partial derivatives of the rotational matrix
[Aw] = [UwJ[A]’ [Ae] = [A][(P]T [Ue][(l’]1 [A¢J = [A][U¢]; (6)
- [A] the derivatives of the matr[>A] with respect to time
A] = w[a, ] + 6[As] + 0]A, |: (7)
- [Q] the matrix given by
sinBsing cosp O
[Q] = [sin@cosd) —-sing O]; (8)
cosO 0o 1
- [Qe] , [Q¢], the partial derivatives of the mater]
cosBsing 0 0 sin6cosdp -sing O
[Qe] = [cose cosd O O], [Q¢] = [— sin@sing - cosd O]; 9)
0 00 0 0 O
- [Q] the derivative of the matri[Q] with respect to time
] = 8lQe] + o[, (10)
- [r] the matrix
0 r cosf ~ (r, + r sinB) cose
[r] =[ ~r cosf 0 (r, + rsin@)sin¢ ] (11)
(r, + rsin@)cosd - (r, + rsinB)sind 0
- [re] , [r¢], the partial derivatives of the matrflx]
0 -rsin® —rcosBcosd
[re] =[ rsin® 0 r cos@sin¢ ]
r cosBcosd —r cosbsing 0
0 0 (r, + rsin®)sin¢ (12)
Ir] = [ 0 0 (r, +rsin®) cosq)];
~(r, + rsin@)sing - (r, + r sinB)cosd 0
- [r] the derivative of the matri[(] with respect to time
[1]= 6] + ol ] (13)
- [I] , the third order unity matrix
100
1] = [o 1 o]; (14)
001
—{F}, the column matrix of the external forces
{F}=[oo-mgoood; (15)

- {EB}, the column matrix

{a}=[[J][Q1+[A1T[AJ[J][Q][§]; "



- {E} the column matrix
0
~ 0
=, | an
ﬁp
- [M] , the matrix of inertia
[m] [o] }
M| = .
=5 ol a8
EQUATIONS OF MOTION

Following [4], one obtains the matrix of constraint

[8] = [1] [AlFT'll. (19)

its derivative with respect to time being

8= [o] [A][r]T[Q] [AIFT Q]+ [AIFT' [ (20)

Knowing that the componenb, of the vectore is

W
w, =[00 1][Q]{é] (21)
¢
and denoting b)[B*] and [ﬁ] the matrices
00 O
[B]=lo0 o |, (22)
00-s2
Iwzl_
L~ o ] “

we deduce the metrical equation of motion )
Hﬁ]] [ﬂ } [ [e]{g }} &4

{a} =[Xo Yo Zo w0 ¢ (25)

and{)} are the Lagrange multipliers

where

= [)‘1 A, }‘3]T- (26)
APPLICATION

Let us consider the case described Qyi§ the radius of circle on which is the torus,defines the
torus)

rh = 03m, r = 005m, 27
s =0 (no rolling friction) ors" = 1(rolling friction), (28)
S= % s", s=0m (no rolling friction), s = 003 m (rolling friction), (29)

m = 20kg, (30)



mr?2
J =7° = 09kgm?, J, =

X

2
My 09kgm?, J, = miZ = 1.8kgm?.

The initial conditions are &t = 0s

U :grad, 0 :i—grad, ¢ = 0rad, X, = -r,cos8 = -0.07765m, Y, = 0m,

g = Orad/s, 8 = Orad's, ¢ = —2rad/s, X, = 0m/s, Y, = =(r, + r sinB)p = 0.69659m/s,

The diagrams are captured in the following figutesthe first three figures we considered the case
rolling friction, and in thetléhree diagrams is presented the case characteriz

characterized by no

Zy =1,8in0+r =0.33978m,

Z, = 0m/s.

by the existence of the rolling friction.
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The variation Xy = Xo(t) for 0 <t <10s and no rolling friction.
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Fig. 2. The variation 6 = e(t) for 0 <t <10s and no rolling friction.
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Fig. 3. The variation ¢ = q>(qJ) for 0 <t < 10s and no rolling friction.
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Fig. 4. The variation Xq = Xo(t) for 0 <t < 10s and with rolling friction.
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Fig. 5. The variation 8 = e(t) for 0 <t < 10s and with rolling friction.
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Fig. 6. The variation ¢ = (I)(LIJ) for 0 <t < 10s and with rolling friction.

CONCLUSIONS

In this paper we discussed the free torus wheeldagy its own weight, which is the real case of an
automobile envelope wheel. The problem is solveidgus. multibody type method. It is easy to
observe that the equations of motion are more deatplin this situation, but they are more accurate
to the practical case. Two particular cases weaad in our paper: with and without rolling frasti
From the diagrams presented in the figures, itlt®s$oat in the case of no rolling friction the noot
has a quasi-periodic aspect, but the rolling ictdiminishes the amplitude of the motion and sbal
cancels the quasi-periodic aspect of the motionthim future we shall discuss the axis of an
automobile.
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