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Abstract: In our paper we discuss the dynamics of the rigid body with a fixed point in the Lagrange–
Poisson case, obtaining the condition for the regular precession. This condition is applied to a 
particular KERS (Kinetic Energy Recovery System) resulting the condition that must exist between 
different geometric parameters for a regular precession. A numerical application is also developed. 
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THE LAGRANGE–POISSON CASE 
 
We consider the rigid body that has the fixed point at O  (Fig. 1) and the fixed reference system and 
the mobile reference system rigidly linked to the solid rigid, respectively, OXYZ  and Oxyz , 
respectively. 
The OZ  axis is vertical ascendant, and the mobile axes are principal inertial axes linked to the rigid 
body at the point O ; hence we may write: 

0 yzxzxy JJJ . (1) 
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Figure 1. Rigid body with a fixed point in the case Lagrange–Poisson. 

 
For this case is also known that the inertial ellipsoid is a rotational one about the Oz  axis, that is 

yx JJ  . (2) 
In addition, the center of weight C  is situated on the Oz  axis and we denote 

OC . (3) 
 
MATRIX OF ROTATION. MATRIX ANGULAR VELOCITY 
 
Denoting by  ψ ,  θ ,  φ  the matrices given by 
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it results the rotational matrix 
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The matrix  ω  of the angular velocities has the expression 
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where 
             uuuθφQ TT , (7) 
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It results 
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DETERMINATION OF THE PRIME INTEGRALS 
 
The theorem of the kinetic energy and work offers 

WT dd  , (11) 
where 

222

2
1

2
1

2
1

zzyxxx JJJT  , (12) 

while Wd  is given by 
CmW rg dd  . (13) 

Since 
1kg g , kr C , (14) 

where 1k  and k  are the unit vectors of the axes OZ  and Oz , respectively, one deduces the 
expressions 

 cos1 kk , (15) 
 cosd gCrg . (16) 

We obtained the relation 
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and, by integration, we get 
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where 1C  is a constant of integration. 
Theorem of the moment of momentum relative to the OZ  axis gives 

0 ZZ MK . (19) 
But 

    ωJK O , (20) 
where 
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it follows: 
kjiK zzyxxxO JJJ  , (23) 

i , j  and k  being the unit vectors of the mobile axes. 
From the relation 

      xAAX 


































z
y
x

Z
Y
X

 (24) 

that links the coordinates in the two systems, we find 
     XAx T ; (25) 

for the point of coordinates  T100  relative to the fixed system, the last relation becomes: 
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that is 
kjik  coscossinsinsin1 . (27)

On the other hand 
1kK  OZK , (28)

so that we have 
 coscossinsinsin zzyxxxz JJJK . (29)

The expression (19) leads to the prime integral of the moment of momentum: 
2coscossinsinsin CJJJ zzyxxx  , (30)

where 2C  is a constant of integration. 
 
EQUATIONS OF MOTION 
 
The Euler equations 
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become now 
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The last relation (32) gives immediately 
const0 z . (33)

We replace the system (32) by an equivalent system given by the equations (33), (18) and (30), i.e. 
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or, in an equivalent form, 
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Keeping into account the expressions (10), the last system reads 
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and denoting 
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it takes the form 
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We multiply the second relation (38) by 2sin , square the last relation (38), and equate the results 
 cos2cossinsincossin 22
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where from 
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Denoting 

 cosw , (42) 
we have 
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and the equation (41) becomes 
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In the right-hand part of the differential equation (44) we have a polynomial of third degree in w , that 
is, a polynomial that has at least one real root. 
Let us write this polynomial in the form 

  01
2

2
3

3 awawawawf  , (45) 
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with 
13 Aa  ,  2

212 ADa  , 1221 2 AADa  , 2
210 DDa  . (46) 

 
REGULAR PRECESSION 
 
The regular precession appears when the polynomial  wf  has a real double root 21 ww  , 
  01 wf ,   02 wf  and, moreover, this double root coincides to the initial value 0w . 

We have 
  12

2
3 23 awawawf  ; (47) 

hence 
  01

2
2

3
3 awawawawf  ,   112

2
131 23 awawawf  . (48) 

Multiplying the first relation (48) by 3 , the second relation (48) by 1w  and adding the results, we 
obtain 

032 011
2
12  awwa . (49) 

Multiplying now the second relation (48) by 2a  and the relation (49) by 33a  and summing, we find 
  0962 3021131

2
2  aaaawaaa . (50) 

Returning to the notations made before and keeping into account that 01 ww  , one gets 
   mgJJJ xzz 0

2
000 cos , (51) 

where 0  and 0  are the initial values for   and  , respectively. 
The condition (51) is the condition for the regular precession. From the system (36) one obtains 

2
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1 w
wAD


 , w

w
wAD

2
22

0 1 
 . (52) 

Moreover, since const0  ww  in the case of the regular precession, one deduces that const , 
const , for 12 w  ( 0 ,  ). 

 
KINETIC ENERGY RECOVERY SYSTEM 
 
The system is drawn in Fig. 2. It contains an axle of length l , radius r  and density 1d ; on the axle is 
put a flywheel of radii r  and R , width h  and density 2d . The flywheel is situated at the distance 0l  
relative to the end O  of the axle. 
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Figure 2. System KERS. 
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Figure 3. Moments of inertia for the flywheel. 
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We want to determine the moments of inertia relative to the point O . 
By symmetry reasons the axes Ox , Oy , Oz  are principal axes of inertia such that 

0 yzxzxy JJJ . (53) 
For the axle we have 
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4
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Denoting by 2O  the center of the flywheel, considering that the axes 22xO , 22 yO  and 22zO  are 
parallel to the axes Ox , Oy  and Oz , respectively, and taking an arbitrary point A  of mass md  in the 
flywheel, we may write its coordinates as 
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wherefrom 
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hence 
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The position of the center of weight is given by 
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HORIZONTAL KERS. REGULAR PRECESSION 
 

In this case 
2
 , 00 w  and the expressions (51) and (52) offer 

 mgJ z 00  , (62) 
const0  , (63) 
const2  D . (64) 

Keeping into account the relations (60) and (61), from the equation (62) we obtain 
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Taking 
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the expression (65) becomes 
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Denoting 


1
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d
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r
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l
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one obtains the relation 
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A few diagram of variations are given in the next figures. 
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Figure 4. The variation   ,,ff  for 2 , 2.0 , 101   

 
NUMERICAL EXAMPLE 
 
We consider the values m 1.0R , m 05.0h , m 064.0r , m 06.0l , 33

1 mkg 108.7 d , 

33
2 mkg 107.2 d , m 3.00 l , srad 

60
6000020  , 2sm 8065.9g . 

One successively obtains 2kgm 031137.0xJ , 2kgm 029981.0zJ , m 03.0 , kg 52618.8m , 
s 763.0srad 013316.0 0

0  . 

The kinetic energy reads now J 591801
2
1

2
1 22   zx JJT . 
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Figure 5. The variation   ,,ff  for 2.0 , 2.0 , 251  . 
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Figure 6. The variation   ,,ff  for 2 , 2.0 , 10   

 
CONCLUSIONS 
 
In our paper we presented a model of KERS and we studied its motion starting from the rigid body 
with one fixed point in the Lagrange–Poisson case. We obtained the condition for the regular 
precession and we particularized this condition in the case of a horizontal case. Some diagrams of 
variation of the angular velocity of the regular precession depending of different parameters are 
plotted. The main part of the kinetic energy comes from the rotation about the Oz  axis. In this paper is 
considered a general flywheel and it is offered a method for the calculation of the moments of inertia. 
This method and the results obtained may be used for flywheels of similar shapes. 
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