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Abstract: In our paper we discuss the dynamics of the rigid body with a fixed point in the Lagrange—
Poisson case, obtaining the condition for the regular precession. This condition is applied to a
particular KERS (Kinetic Energy Recovery System) resulting the condition that must exist between
different geometric parameters for a regular precession. A numerical application is also developed.
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THE LAGRANGE-POISSON CASE

We consider the rigid body that has the fixed point at O (Fig. 1) and the fixed reference system and
the mobile reference system rigidly linked to the solid rigid, respectively, OXYZ and Oxyz,
respectively.
The OZ axis is vertical ascendant, and the mobile axes are principal inertial axes linked to the rigid
body at the point O ; hence we may write:

J,=J_=J,=0. (D

Figure 1. Rigid body with a fixed point in the case Lagrange—Poisson.

For this case is also known that the inertial ellipsoid is a rotational one about the Oz axis, that is

Jo=J,. 2)
In addition, the center of weight C is situated on the Oz axis and we denote
oC =¢. )

MATRIX OF ROTATION. MATRIX ANGULAR VELOCITY

Denoting by [w], [8], [@] the matrices given by
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cosy —siny 0 1 0 0 cosp —sing 0
[w]=|siny cosy O, [8]=|0 cos® —sinB|, [p]=|sing cose 0], 4)
0 0 1 0 sin® cos6 0 0 1
it results the rotational matrix
cycop—sycOsp —cysp—-sycOcop sysHO

[A] = [\y][ﬂ][(p]z syco+cycOsp —sysp+cycbco —cysH|. (%)
sOso sOco cO
The matrix {®} of the angular velocities has the expression
W
lo}=[Q] 6. (©)
¢
where
[] = oI [oT fu, | oo} {uJ. )
0 1 [
fu, |- Ola{ue}— 0], fu,f=10]. ®)
1 0 |1
It results
sinfsing cosp O
[Q] = {sin Ocosp —sing 0, )
cos 0 0 1]
O, \ sin O sin @ + 6 cos @
{o)}z o, |= ysinOcos @ —Osin@|. (10)
O, ycos O+ @

DETERMINATION OF THE PRIME INTEGRALS

The theorem of the kinetic energy and work offers

dr = dw , (11)
where
1 2 1 2 1 2
T=—Jw +—J o +—J o, (12)
2 XX 7 x>y 7 z%z
while d is given by
dW = mg - dr.. (13)
Since
g = —gk,, rc = Ck, (14)

where Kk, and k are the unit vectors of the axes OZ and Oz, respectively, one deduces the
expressions

k, -k =cos9, (15)
g-dr. = -gClcos . (16)
We obtained the relation
d(% J o + %Jx(oi - %Jzoﬁj = —mgCd(cos 0)t (17)
and, by integration, we get
1 1 1
—J o2 +=J o> +—J. o> +mglcosd=C,, 18
2 XX 2 x>y 2 z77z gg 1 ( )
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where C, is a constant of integration.
Theorem of the moment of momentum relative to the OZ axis gives

K,=M,=0.
But
KO}Z[J] 0)},
where
K,
= K
K,
J. 0 0
pl=|0 v, 0};
0 0 J,
it follows:

Ky =J0,i+J0j+J ok,
i, j and k being the unit vectors of the mobile axes.
From the relation

X X
Xj=|r|=[a]ly|=[Alx}
Z z

that links the coordinates in the two systems, we find

ixp =[] {x}:

for the point of coordinates [0 0 1]" relative to the fixed system, the last relation becomes:

0 sin O sin @
{x}=[A]'|0|=|sinBcos p|,
1 cos 0
that is
k, = sin O sin @i + sin 6 cos @j + cos Ok .
On the other hand

K; =K, -k,
so that we have
K., =Jo, sinBsing+J.o, sinbcosp+J.o, cosb.

The expression (19) leads to the prime integral of the moment of momentum:

J,o,sinOsing + J o, sinOcos ¢+ J 0, cosd =C,,

where C, is a constant of integration.

EQUATIONS OF MOTION

The Euler equations

T, +0,0,(J. - J,)=M,
Jo, + oo/, -J.)=M,
T, + 00,7, -J.)=M,

become now
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Jx(bx + (Dymz(‘]z - Jx) = Mx’
Jx(by + (Dzmx(‘]x - Jz) = My’ (32)
T, = 0.

The last relation (32) gives immediately
®, = 0, = const . (33)
We replace the system (32) by an equivalent system given by the equations (33), (18) and (30), i.e.
®, = 0,
Jx((oi - mi) + J,02 =2C, — 2mgC cos 6, (34)
Jx((ox sin ¢ + ®, cos ¢)sin 6 = C, — J, o, cos O

or, in an equivalent form,

®, = 0,
) zﬁ_£m2_2mggcos9
Yo J, J

X X X

o + o : (35)

((ox sin ¢ + ®, cos (p)sin 0= % - io)z cos 0.

Keeping into account the expressions (10), the last system reads

., = o),
2C, - J o5  2mgC cos O
J J

X X

y2sin20 + 02 = , (36)

Z

\psin2e=%— ®, cos O

and denoting

2C, — J.m?
= Dy =h A = A = ey, (37)

X X X X

D]
it takes the form
0, = 0,,
y2sin? 0 = D, — 4, cos 0 — 02, (38)
ysin? 0 = D, — 4, cos 6.
We multiply the second relation (38) by sin? 0, square the last relation (38), and equate the results

D, sin? @ — 4 cos Osin2 0 — 62 sin2 0 = D2 + 42 cos? O — 2D, 4, cos 0, (39)
where from
62 sin2 0 = D, (1 — cos? 6) — 4, cos 6(1 — cos? 6) — Dj — 43 cos? 0 + 2D, A4, cos 0, (40)
62 sin 0 = 4, cos® 0 — (D] - Af)cos2 0+ (2D,4, — 4,)cos © + D, — D2. 41)
Denoting
w=cos0, (42)
we have
=3 dsine (43)
dt

and the equation (41) becomes
W2 = 4w’ — (D, + A2 + (2Dy4, — 4w + D, — D2. (44)
In the right-hand part of the differential equation (44) we have a polynomial of third degree in w, that

is, a polynomial that has at least one real root.
Let us write this polynomial in the form

f(w) = a;W + a,w? + aw + a,, 45)
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with
ay = A, ay=—(D, + 42), a, = 2D, 4, — 4, a, = D, - D?. (46)

REGULAR PRECESSION

The regular precession appears when the polynomial f (w) has a real double root w, =w,,
f(wm)=0, f(w,) =0 and, moreover, this double root coincides to the initial value w,.
We have
(W) = 3a;w* + 2a,w + a;; 47)

hence

f(w )z a,w® + a,w? + aw + ay, £ (w)=3a;w? +2a,w + q. (48)
Multiplying the first relation (48) by — 3, the second relation (48) by w, and adding the results, we
obtain

a,wt +2,w, +3a, =0. (49)
Multiplying now the second relation (48) by a, and the relation (49) by — 3a, and summing, we find
(2c122 - 6a,a, )w] + a,a, —9a,a; = 0. (50)

Returning to the notations made before and keeping into account that w;, = w,, one gets
Ty + (/. = J ) cos 0, = mgC, (51)

where \y, and ¢, are the initial values for \y and ¢, respectively.
The condition (51) is the condition for the regular precession. From the system (36) one obtains

D, -4 . D, — A
= 2T 00 -, - 220y (52)
1-w? 1-w?
Moreover, since w = w, = const in the case of the regular precession, one deduces that \y = const,

¢ = const, for w?» #1 (00, 0 = n).
KINETIC ENERGY RECOVERY SYSTEM

The system is drawn in Fig. 2. It contains an axle of length /, radius » and density d,; on the axle is
put a flywheel of radii » and R, width % and density d,. The flywheel is situated at the distance /,
relative to the end O of the axle.

2r

y lo

Figure 2. System KERS.

Figure 3. Moments of inertia for the flywheel.
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We want to determine the moments of inertia relative to the point O .
By symmetry reasons the axes Ox , Oy, Oz are principal axes of inertia such that

Jy=J.=J,=0. (53)
For the axle we have
273
s =g - EL (54)
4
g0 = #' (55)

Denoting by O, the center of the flywheel, considering that the axes O,x,, O,y, and O,z, are
parallel to the axes Ox, Oy and Oz, respectively, and taking an arbitrary point 4 of mass dm in the
flywheel, we may write its coordinates as

X, =pcosa, y, =psina, z, =1, +n, (56)
wherefrom
2 =p?cos?a = pz%s(za), y: =p?sin?a = pzl—%s@oc)’ 2= +n*+2n. (57
We have
h
n 5 R
j yi+ zA)dm d, j j J’p{% 1 - cos(2a)]+ 12 +n? + 2lon}dpdndoc
D O ﬁ r
2
2 2 (58)
_ —“(R 12, (R? + r2 + 2412 + 1),
4
J@) = j0@) = M(RZ L2 1042 + h2) J@) = M(Rz 4 ,,2).
y X 4 0 > Yz 2 2
hence
273 2 _ 2
J, = J0 4+ J0) = ndlg G “dz(R4 )i (R2 + 2 + 2412 + 12), (59)
J, = ng) + J£2) = nd121r4 n ndz(R;_ r4)h ) (60)
The position of the center of weight is given by
12
2t 2 _ 2
. nd,r 5 + TCdZ(R r )hlo 61)
nd, 2+ nd, (R2 — 2
HORIZONTAL KERS. REGULAR PRECESSION
In this case 6 = E, w, = 0 and the expressions (51) and (52) offer
2
J oy = mgC, (62)
¢ = w, = const, (63)
y =D, = const. (64)
Keeping into account the relations (60) and (61), from the equation (62) we obtain
K 2
% ldir* + dy(R* = #4)n] = g{dlrz % +dy(R? - rz)hlo] (65)
Taking
[
Iy =—, 66
0= (66)



the expression (65) becomes

Voooldiirt + dy(R* = )] = gldr2? + dy(R? — #2 )i (67)
or
2
1+ d (R _ 1 h
gl d, \ r? [ 68
Vom o2 4 (R \h (68)
1+ — =1
d\ rt l
Denoting
d, R h
I 6 s T T s T 5
p p P / X (69)

one obtains the relation

_ gl 143> — 1)
Vo= o T+5(p* — 1y

(70)
or

0ty _ 1+3(7 1k _ s
o —1+6(p4_1)x—ﬁ’(,p,x)- (71)

A few diagram of variations are given in the next figures.
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Figure 4. The variation ﬂ(& o, x) forp=2,%=02,1<8<10

NUMERICAL EXAMPLE

We consider the values R = 0.Im, 4 =0.05m, »=0.064m, [ =0.06m, d, =7.8-10°kg/m?,
60000

d, =2.7-10°kg/m?, [, =03m, w, = 2n rad/s, g = 9.8065m/s? .

One successively obtains J, = 0.031137kgm?, J, = 0.029981kgm?, { = 0.03m, m = 8.52618kg,
W, = 0.0133161ad/s = 0.763 °/s .

The kinetic energy reads now 7T = % W+ %JZ(’p2 = 5918017.

58



1

0.9 \
0.8 \
|-
0.6 \

0.5 \
ool

0.3 \
oafo
o

0

P doty /(dl)

0 5 10 15 20 25
P

Figure 5. The variation f/(8,p,y) for 6 = 0.2, x = 0.2, 1 < p < 25,
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Figure 6. The variation f/(8,p,y) for p =2, =02, 0<y <1
CONCLUSIONS

In our paper we presented a model of KERS and we studied its motion starting from the rigid body
with one fixed point in the Lagrange—Poisson case. We obtained the condition for the regular
precession and we particularized this condition in the case of a horizontal case. Some diagrams of
variation of the angular velocity of the regular precession depending of different parameters are
plotted. The main part of the kinetic energy comes from the rotation about the Oz axis. In this paper is
considered a general flywheel and it is offered a method for the calculation of the moments of inertia.
This method and the results obtained may be used for flywheels of similar shapes.
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