UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN

Faculty Of Mechanics And Technology AUTOMOTIVE series, year XXI, no. 25

SOME ASPECTS REGARDING THE EQUIVALENCE OF THE EULER
AND BRYAN ROTATION SCHEMATA

Nicolae-Doru STANESCU", Adriana-Gabriela PLAIASU
University of Pitesti, Faculty of Mechanics and Technology, Department of Manufacturing and Industrial
Management

Article history:
Received: 08.01.2016; Accepted: 11.04.2016.

Abstract: In our paper we will make a presentation of the Euler and Bryan rotational schemata proving their
equivalence modulo 2T for each rotational angle. Reducing the interval of variation to [O,ZTE], for each angle

for a given rotational schema, there result two different possibilities of rotation for the other schema. Imposing
initial conditions, the result is unique, no matter what rotational schema is the original and which one is the
transformation. For each possibility, the derivatives of the angles with respect to time are completely
determined. A numerical application completes the theory.
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INTRODUCTION

In the study of the dynamics of rigid bodies by the multibody type approach, one uses
different rotational schemata, the most known of them being Euler’s and Bryan’s schemata.

It is proved [1] that the possible rotational schemata are only 12; they can be divided into two
categories: aba and abc, where a, b and ¢ signifies the axis about which the rotation is
performed.

Assigning the values 1, 2, and 3 for the axes x, y, and z, respectively, it is clear that the
Euler schema may be denoted by 313, while the Bryan schema may be noted as 123.

Let v, 6 and ¢ be the three rotational angles and let [y], [8], [p] be the corresponding

matrices

[cosy —siny 0] 10 0 | [cosp —sing 0]

[‘I’E]= siny cosy O], [BE]z 0 cos® —sinB|, [(pE]z sing cos¢ O], €))
| 0 0 1 |0 sin® cos6 | | 0 0 1]
1 0 O] [ cos® 0 sin] [cosp —sing 0]

[‘I’B]= cosy —siny 0], [BB]z 0O 1 0 |, [(pB]z sin@ cos¢o O0]. ()
| siny cosy O] |—sin® 0 cos 0 | 0 0 1]

In the previous relations the indices E, and B stay for Euler, and Bryan, respectively.
It results the rotational matrices
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cyce — syebsp — cyse — sycbep  syso

[Ac]=[w:]0:Jos] = | sweo + cychse — sysp + cycbep — cysd |, (3)
sOso sOco co
cOco — cOso sO

[As]=[w,10,]05]=| swsbco+cysp —sysbso + cycp —sych . (4)

—cysOco + sysp  cysOse + syce  cych
Let [Q] be the matrix defined by

[Q]=[o] [T fu, } fuo} fu, )], 5)

where {u,} has the values

fu,}=[oof, fut=[010], fu,}=[0 01, 6)

depending on the axis about which the rotation of angle o takes place: x, y or z.
One obtains

[sinpsin® cosq O]

[Q.]=|cospsin® —sing 0], (7
| cos© 0 1
[ cospcos® sing O]

[Qs]=|-sin@cos® cosop 0. (8)
sin 0 0 1

The matrix of angular velocities reads
oj=[Q] 6|, ©)

One also deduces the matrix of angular accelerations as

v ]
)=o) =0 6 +[Q]§ : (10)
¢ ¢
where
(@)= [oT o] fu,} o} fu, ]+ o] [6] 0} {0} {0} (11)
in which
{0}=[0 0 o] . (12)

DETERMINATION OF THE BRYAN ROTATIONAL ANGLES KNOWING THE
EULER ROTATIONAL ANGLES

Knowing the Euler rotational angles v, 6, , and ¢, , we may determine the rotational matrix
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in the form

o Oy O
[Asl=lw.]0.Jo:]=|B B, Bs| (13)
i Y2 Vs

Equating the rotational matrices [A,] and [A,] ([A,]=[A,]), the element situated on the
first row and third column in the matrix [A ] offers

sin @ = o, (14)
wherefrom

0, = arcsin oy, 0, = m — arcsin o, (15)

that is, there are two possibilities for the angle 0 in the interval [0,2x].
In addition

cos 8, = cos(arcsin a; ), cos ©, = — cos(arcsin o5 ). (16)
Examining the first line in the matrix [A,], we get

oy o,

cos @ = , sin g = — ; 17
¢ cos 0 ¢ cos 0 17
hence, the angle ¢, is determined (two possible values in the interval [0,2x]).
The third column of the matrix [A ,] gives the values
siny = — Py ,cosy = 1 (18)

cos 0 cos 0

and, consequently, the angle v, .

One may observe that the problem has not a unique solution. The expressions (15) are written
only for 0  [0,2n]. Generally, we discuss about a double infinity of solutions given by

0 = arcsin o, + 2kn, 0 = (2k + 1)n — arcsin a5, (19)

where k € Z.

DETERMINATION OF THE EULER ROTATIONAL ANGLES KNOWING THE
BRYAN ROTATIONAL ANGLES

The problem is completely similar and let [A ;] be the rotational matrix

a, o, o,
[As]=lws00,]0,1= |8 B, Bs|. (20)
i Y2 73

The element situated on the third row and third column in the matrix [A ] leads to

cos 0 = v;, (21)
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wherefrom

0, = arccos y;, 0, = 2w — arccos v, .

Examining now the last line and the last column in the matrix [A ], we get

sin(p:.}/—', cos ¢ = .}’2 ,
sin O sin 6
. o
siny =—, cosy = — p3 ,
sin sin O
where
sin @, = sin(arccos y5), sin 8, = —sin(arccos v;).

In conclusion, the angles ¢, and vy, are also determined.
Some remarks must be made:

(22)

(23)

(24)

(25)

- relations (17), (18), (23) and (24) do not offer a unique solution for the angles ¢ and vy . For

instance, if we determine a solution ¢* of the equation (17), the general solution is

Q=0 +2km,

where £ is an arbitrary integer;

(26)

- the problem has a simpler solution if o, = *1 (in the case of the matrix [A,]) or y; = %1 (in
the case of the matrix [A,]). We will not discuss here the singularities of the dynamical

equations of motion.
THE ANGULAR VELOCITY MATRIX

Knowing the Euler angles and their variations, we may write

(Dx \ijE

(Dy = [ E] eE

(Dz (pE
For the Bryan angles we have

(Dx \ijB

®, = [QB] 05

(Dz (pB

Equating the last two relations, we obtain

Ve Vs
[QE] eE = [QB] 93
O Op

Assuming now that [Q,] and [Q,] are invertible, we may write

27)

(28)

(29)
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_\I:!E_ _\!/3_
eE = [QE]_][QB] eB ) (30)
_(pE_ _(bB
_\!/3_ _\i!E_
93 = [QB]_][ E] eE . (31)
Py | O |
Let us observe that
det[Q,]=—sin6,, (32)
det[Q,] = cos 0, (33)

and the singularities appear for 0, = kn, 6, = g + km, k e Z, that is, they appear when

a; = 1 or y; = £1 (see also the previous paragraph).

NUMERICAL EXAMPLE

Let us assume the Euler rotational schema for which
Y, =30+1—-1,0,=45+12 -1, ¢, =60+ 13 — 12, (34)

where the angles are given in degrees, while ¢ is the time.
For ¢t =1 determine:
i) the matrix of rotation [A];

i1) the corresponding rotational angles for the Bryan schema;
iii) the matrix of angular velocities {®, };

iv) the matrix [\j/B 0, ('pBr.
Solution: 1) We may successively write

welt =1)=30°, 0,(r =1)= 45, ¢, (c = 1) = 60°, (35)

Vple=1)=1,0,(=1)=2, ¢,(t=1)=1, (36)

0.12683 — 0.92678 0.35355
[A;]=0.78033 —0.12683 - 0.61237 . (37)
0.61237 0.35355  0.70711

i1) From the relation

sin 0, = 0.35355 (38)
we deduce (for 6, € [0,27])
681 =20.70460° = 0.36136rad, 632 =159.29540° = 2.78023 rad. (39)
Further on, we consider
0, = 20.70460° = 0.36136 rad (40)
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and we have

- 0.61237 0.70711

siny, = ——————""_ = 0.65465, cos y, = —————— = 0.75593,
Ve = os 20.70460° Ve = 08 20.70460° (41)
v, = 40.89312° = 0.71372rad
0.12683 ~0.92678
COS Py = —————— = (.13559, sin ¢, = —————— = 0.99077,
P8 = 05 20.70460° P8 = o8 20.70460° (42)

¢y =82.20745° =1.43479rad.

The reader may observe that we have limited to the interval [0,2x].
1i1) We write
0.61237 0.50000 O

[Q.]=10.35355 - 0.86603 0 (43)
070711 0 1

and it results

0.61237 0.50000 0] 17 [ 1.61237
[0,]=1]0.35355 — 0.86603 0| 2| =|-1.37851]. (44)
070711 0 1] 1| [ 170711

1v) We calculate

0.12683  0.99077 0
[Q,]=|-0.35029 0.13559 0, (45)
035355 0 1

0.36618 —2.67573 0
[Q,]" =] 094601 034252 0], (46)
—0.12947 0.94601 1

W, 4.27894
0, | =[Q,] o, }=]1.05315|. (47)
o 0.19427

CONCLUSIONS

This paper shows the way in which one may pass from a rotational schema to another. The
results may be easily generalized for two arbitrary rotational schemata, one of them being of
aba type and the one of abc type. In this way, the singularities that appear in the equations of
motion, reported in [1] and [2] may be avoided. The passing formulae are not uniquely
determined, but considering the initial conditions they become unique, so the transformation
1s a one-to-one transformation.
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